Tesla speculated electricity from thin air was possible – now the question is whether it will be possible to harness it on the scale needed to power our homes
@Olap@lemmy.world
link
fedilink
English
51Y

Wow. Presumably coastal northern communities could be big beneficiaries of this in the future. Lets hope it’s not literal vapourware

RCMaehl [Any]
link
fedilink
English
351Y

The device they have come up with is the size of a thumbnail, one-fifth the width of a human hair, and capable of generating roughly one microwatt – enough to light a single pixel on a large LED screen.

So probably only going to be usable for low power devices for a while

@TehWorld@lemmy.world
link
fedilink
English
191Y

The size almost seems like a feature. If it’s durable at all, you make a scale-maile coat that dehumidifies the sweat off of you and provides power for some sensors or something? The article mentions a washing machine size box that would power your whole house (but I’ll bet getting humidity to the middle would be a challenge for that form factor.

@Olap@lemmy.world
link
fedilink
English
21Y

deleted by creator

Kertain
link
fedilink
English
61Y

Well I hope they stay safe 😳

Live Your Lives
link
fedilink
English
231Y

Here’s the explanation of the physics they gave:

Each nanowire was less than one-thousandth the diameter of a human hair, wide enough that an airborne water molecule could enter, but so narrow it would bump around inside the tube. Each bump, the team realised, lent the material a small charge, and as the frequency of bumps increased, one end of the tube became differently charged from the other.

"So it’s really like a battery,” says Yao. “You have a positive pull and a negative pull, and when you connect them the charge is going to flow.”

@Krotz@lemmy.world
link
fedilink
English
31Y

It would be amazing if this technology is able to scale and go down in cost. There are so many possible implementations, it would be a really great way of creating a more sustainable future.

@variaatio@sopuli.xyz
link
fedilink
English
2
edit-2
1Y

It won’t (my personal totally empty prediction). To get humidity in larger scale it means getting air flow. Air flow in sufficient numbers doesn’t come out of no where. Usually with this kind of stuff one quickly finds one needs just insane amount of flow to scale meaning big blower fans and then you find you spend all the energy you produce running the fans and other needed ancillary equipment.

“The beauty is that the air is everywhere,” says Yao. “Even though a thin sheet of the device gives out a very tiny amount of electricity or power, in principle, we can stack multiple layers in vertical space to increase the power.”

And when you start stacking the layers you need pressure to push the air through the layers and so on meaning, supply fans. Otherwise eventually on big enough system you find… the system sucks all the moisture out of the air locally and then no more electricity. They aren’t pulling energy out of air, but out of humidity . First is plentiful in atmosphere, second is at times very finite quantity locally. Sure on the wider atmosphere the humidity is plentiful, but again how you get that humidity to the device constantly. There needs to be airflow. With small enough device like those micro watts, well the humidity present ambiently is enough, since it consumes next to nothing. Start to scale up and well the ambient humidity is not enough. Not unless you are at windy sea front at which point… why not just put up a wind turbine and a sea front sea wave power station.

It might find utility as small local power source with not much power required, but grid scale thing it most likely won’t be. aka it isn’t hog wash, but when they start talking “yeah, but we put 100k of these disks in a stack and it will be this much power” you must start asking “so how many kilogram of H2O is that thing ingesting per minute, is there that much H20 weight in the air in the first place. If not how big fans and turbine you need to drive new moist air to it”.

It won’t (my personal totally empty prediction). To get humidity in larger scale it means getting air flow. Air flow in sufficient numbers doesn’t come out of no where. Usually with this kind of stuff one quickly finds one needs just insane amount of flow to scale meaning big blower fans and then you find you spend all the energy you produce running the fans and other needed ancillary equipment.

It’s possible to use direct mechanical power harvested from renewables to turn the fans, though depending on the effiency it might make more sense to just convert that mechanical power directly into electricity. But, for example, a windmill (as opposed to a wind turbine) could harvest large scale natural air flow and then mechanically leverage that to move humid air at a smaller scale. Same with dams.

Won’t somebody please think about the poor lowly fossil fuel company shareholders.

How will they ever achieve pertetual growth every quarter if this tech gains traction.

We should tax these new technologies so that fossil fuels can still compete

/s in case its not obvious lol

@reverie@lemmy.world
link
fedilink
English
61Y

American southeast could single handedly power the country

So said they’re all gonna have a brain aneurysm a week from now:(

@zahel@lemmy.world
link
fedilink
English
14
edit-2
1Y

Florida: You all ain’t ready for all this POWAAAAAAA

Create a post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


  • 1 user online
  • 186 users / day
  • 583 users / week
  • 1.37K users / month
  • 4.49K users / 6 months
  • 1 subscriber
  • 7.41K Posts
  • 84.7K Comments
  • Modlog